
Computation of the reduced product between the interval and
known bit domains

Alexander Arthur
The University of Queensland

alex@alegs.xyz

1 Preface
This document was prepared for an audience mostly unfamiliar with abstract interpretation. If you
know what a reduced product is, you could happily skip ahead to Section 7.

2 Introduction
As long as they completed the first or second grade or elementary school, the reader should be familiar
with the interval domain in the context of static analysis. For those who failed kindergarten, a static
analysis of a program over the interval domain produces an interval of the form [𝑎, 𝑏] for each variable
in the program, where the concrete value of each variable is guaranteed to be within its interval for
every possible execution of the program being analysed.

3 Motivation
Unfortunately, static analyses are not omnipotentcitation needed and thus an interval analysis sometimes
produces results that are less precise than would otherwise be possible.

1 𝑋 ← 1
2 while 𝑋 < 10 do
3 𝑋 ← 𝑋 + 2
4 done
5 if 𝑋 ≥ 12
6 𝑋 ← 0
7 endif

Algorithm 1: Blatantly stolen from Antoine Miné [1]

As an example, at Line 4 an interval analysis could use a combination of the loop body and guard to
conclude that 𝑋 ∈ [11, 12] . However, at Line 5 the analysis must consider the body of the if statement
(since¹ [12, +∞] ∩ [11, 12] ≠ ∅), and so by Line 7 the interval expands back to 𝑋 ∈ [0, 12].

The intelligent reader could observe that Algorithm 1 is free from non-determinism, and that therefore
𝑋 = 11 at the end of every execution of the program. We will aim to use the results of another analysis
—a known bits analysis—to refine the results of the interval analysis. Another reason to do this is
that BASIL’s² current interval analysis falls on its face given any binary operation other than addition
and subtraction, so supplementing it with information from the known bits analysis will be beneficial
as well.

4 Known Bits Analysis
Computers represent numbers using ones and zeroescitation needed, and we can therefore reason about

¹If we abuse some notation slightly in order to conflate an interval with the set it represents
²https://github.com/UQ-PAC/BASIL

mailto:alex@alegs.xyz
https://github.com/UQ-PAC/BASIL

variables as 𝑛-bit bitvectors and glean information about their (signed or unsigned) value³. We want
to be able to make a statement about which bits of a variable we know to be 1, which we know to be
0, and which we can’t know for certain.

In order to do this, we need a third value 𝜇 to represent this unknown state, meaning that we must
model each variable not as a vector of bits (elements in {0, 1}) but as a vector of trits (elements in
{0, 1, 𝜇}). For example, if our analysis can deduce that the second bit of the eight-byte variable 𝑋
is 1 and the third is zero, but nothing about the others, we would write that abstract tritvector as
𝑋 = [𝜇01𝜇𝜇𝜇𝜇𝜇𝜇].

5 Maths time
I’ve been talking about domains this whole time, but what is a domain? I won’t give a formal definition
(see [1] or [2] for that), but I’ll give enough examples to hopefully provide some intuition.

5.1 Order theory and lattices
Lattices are pretty fundamental to the field of static analysis. If we have some set (let’s say the integers
ℤ) and a partial ordering⁴ on that set (let’s say ≤), then together they form a partially ordered set
(written as the pair (ℤ, ≤)), or poset for short.

Let’s look at another poset (𝒫, ⊆). This uses the operator ⊆ to construct an ordering over every
possible subset of the integers.

We use these orderings in a static analysis to represent the specificity of the information we know
about the program. If we have two things 𝑎 and 𝑏, then 𝑎 ⊑ 𝑏 iff 𝑎 tells us more information than 𝑏.
Additionally, we define an element of our set denoted ⊤, loosely defined as ∀𝑠 ∈ 𝑆, 𝑠 ⊑ ⊤⁵.

5.2 Theory is boring hurry up
Okay! So we’ve got a concrete domain (𝐶, ≤) and an abstract domain (𝐴, ⊑). We can define a concreti�
sation function 𝛾 : 𝐴 → 𝐶 that turns a value in the abstract domain into a value in the concrete domain.
If our concrete domain is the powerset of integers under inclusion as before, then the concretisation
function 𝛾 gives us the set of integers that the abstract representation represents. For the interval
domain, this happens to be 𝛾([𝑎, 𝑏]) = {𝑥 ∈ ℤ | 𝑎 ≤ 𝑥 ≤ 𝑏}.

We can also define the opposite operator (although it isn’t guaranteed to exist!), an abstraction function
𝛼 : 𝐶 → 𝐴, which gives the optimal representation in the abstract domain of some element of the
concrete domain. For our interval domain again, we can define this as 𝛼(𝑍) = [min(𝑍), max(𝑍)]. I’ll
point out here that, as is always the case in static analysis, this is an approximation. Given the set
{1, 3, 4} we are forced to represent it as the interval [1, 4], despite the fact that this includes 2 while
our original set did not⁶.

If we get lucky, 𝛾 and 𝛼 together form a Galois connection, which lets us take an abstract value on a
trip through the concrete world 𝛼(𝛾(𝑎)) (and vice versa) and, if we repeat this more than once, not
have it lose any information past that which is lost on the first trip (i.e. 𝛼 ∘ 𝛾 and 𝛾 ∘ 𝛼 are idempotent).
We denote this Galois connection

³And a number of other things - congruency being prominent among them.
⁴Exactly what a partial ordering is isn’t super important, but it’s worth noting that the ordering doesn’t need to be

defined on every pair of elements in the set. If 𝑎 and 𝑏 are elements in my poset (𝑆, ⊲), then it’s possible that neither
of 𝑎 ⊲ 𝑏 and 𝑎 ⊳ 𝑏 are true.

⁵In our example of (𝒫(ℤ), ⊆) from before, ⊤ = ℤ
⁶This is a tradeoff between accuracy and computability. We could always use the perfectly accurate method of

simulating every possible execution of a program, but this is usually infeasiblecitation needed, so we are forced to make
approximations for the sake of being able to compute an answer in a reasonable amount of time. The trick lies in
making the right approximations.

(𝐶, ⊆) ←←←←←←→→→→→→
𝛾

𝛼
 (𝐴, ⊑)

6 Reduced product. Finally!
Shut up. So we’ve got two domains: ℐ of intervals and 𝒯 of tnums. We want to find some way of
using the information from one domain to improve the accuracy of the other. Since it happens to be
the case that 𝛾ℐ and 𝛾𝒯 share a codomain (namely 𝒫(ℤ)), we can take an interval [𝑎, 𝑏] and a tnum
𝑥 and compute both 𝛾ℐ([𝑎, 𝑏]) and 𝛾𝒯(𝑥) to obtain two sets of integers. Since both of our domains
are themselves sound,⁷ we can take the intersection of these two sets in order to produce a new, more
specific set of possible values. Let’s call that function 𝛾ℐ×𝒯, and define

𝛾ℐ×𝒯([𝑎, 𝑏], 𝑥) = 𝛾ℐ([𝑎, 𝑏]) ∩ 𝛾𝒯(𝑥)

Now that we’ve refined our result, we need to move it back into our abstract domains, so that the
analysis can continue. Luckily, we’ve got functions do that for us! 𝛼ℐ : 𝒫(ℤ) → ℐ and 𝛼𝒯 : 𝒫(ℤ) →
𝒯 will do exactly what we want, so we can construct the optimal reduction 𝜌 as

𝜌(𝑝, 𝑞) = (𝛼1(𝛾1×2(𝑝, 𝑞)), 𝛼2(𝛾1×2(𝑝, 𝑞)))

which in our case looks like

𝜌([𝑎, 𝑏], 𝑥) = (𝛼ℐ(𝛾ℐ×𝒯([𝑎, 𝑏], 𝑥)), 𝛼𝒯(𝛾ℐ×𝒯([𝑎, 𝑏], 𝑥)))

Yay!

What next?

7 Computers aren’t maths, dummy⁸
Writing that down was easy! Computing that is less easy!

One option is to go for the simple but sub-optimal approach:

𝜌([𝑎, 𝑏], 𝑥) = ([𝑎′, 𝑏], 𝑥′)

where

𝑎′ = max(𝑎, ⌊𝑥⌋)
𝑏′ = min(𝑏, ⌈𝑥⌉)
𝑥′ = 𝑥𝑖>width(𝑏)

I’ve pulled some notation out of thin air there, so let’s go through it:
• ⌊𝑥⌋ and ⌈𝑥⌉ denote the minimum and maximum possible values of the tritvector 𝑥, i.e. replace every

𝜇 with a 0 in the case of ⌊𝑥⌋ and with a 1 for ⌈𝑥⌉⁹.
• 𝑥𝑖≥𝑛 is the tritvector 𝑥, except with all the trits past the nth place replaced with zeros (i.e. bounding

the value of 𝑥 above). Bounding it below is more difficult; all you can say is “At least one of the trits
past the nth place are 1”, which is less useful.

⁷Not that I’ve defined what being sound is. Put simply, soundness says that I will only ever produce an
overapproximation of the true result, and never an underapproximation. A sound analysis will never fail to include a
possible value in its result.

⁸Citation needed.
⁹This is assuming an unsigned representation. The signed case should have approximately the same properties with

different mechanics, but I haven’t thought about it yet.

This approach is sound, and easy to compute, but is not optimal. Consider an example where we arrive
at a point in the program with an interval of [6, 10] and a tnum of 𝜇00𝜇. ⌊𝜇00𝜇⌋ = 0, which isn’t much
use and leaves 𝑎′ = 6, but ⌈𝜇00𝜇⌉ = 1001 = 9, which lets us give 𝑏′ = 9, a slight improvement. We
also aren’t able to improve 𝑥′ at all using this method; it remains as 𝑥′ = 𝜇00𝜇.

7.1 Let’s get clever
We want to be able to make better refinements to our interval and tnum than just the simple maximums
and minimums above. The two algorithms in Algorithm 2 define a much more precise refinement. We
perform a binary search¹⁰ over the unknown bits in the tnum to find the smallest value representable
by the tnum which is greater than or equal to the original interval bound (and vice versa for the upper
bound). For example, given the interval [6, 10] and the tnum 𝜇00𝜇, we can refine our lower bound to
8, since neither of 6 or 7 have zeros in the middle two bits.

1 def refineLowerBound(𝑎, 𝑥)
2 𝑎′ ← ⌈𝑥⌉
3 for 𝑖 ∈ [width(𝑥) − 1, 0] s.t. 𝑥[𝑖] = 𝜇 do
4 𝑎′[𝑖] ← 0
5 if 𝑎′ < 𝑎 then
6 𝑎′[𝑖] ← 1 # Went too far
7 endif
8 done
9 return 𝑎′

(a) Algorithm to refine an lower bound

1 def refineUpperBound(𝑏, 𝑥)
2 𝑏′ ← ⌊𝑥⌋
3 for 𝑖 ∈ [width(𝑥) − 1, 0] s.t. 𝑥[𝑖] = 𝜇 do
4 𝑏′[𝑖] ← 1
5 if 𝑏′ > 𝑏 then
6 𝑏′[𝑖] ← 0 # Went too far
7 endif
8 done
9 return 𝑏′

(b) Algorithm to refine an upper bound
Algorithm 2: Refine an interval with a tnum.

In theory, Algorithm 2 is 𝒪(𝑛) where 𝑛 is the number of unknown bits in the tnum, but in most
practical implementations of a tnum it is probably 𝒪(width(𝑥)).

We also wish to refine our tnum. This is a trickier operation. We can use our interval to deduce some
number (possibly zero) of the high bits of the tnum. For example, consider an interval representing an
𝑛-bit value. If the lower bound of the interval is greater than or equal to 2𝑛−1 (and we require that 𝑎 ≤
𝑏 in our interval [𝑎, 𝑏]), then we can conclude that the high bit must be set (or unset, if the interval is
contained within the lower half of the value’s range). In bitwise terms, this is equivalent to finding the
largest sequence of the high bits that are common to 𝑎 and 𝑏. Algorithm 3 performs this operation.

¹⁰Although it doesn’t look like it at first glance!

1 def refineTnum([𝑎, 𝑏], 𝑥)
2 mask ← ~(𝑎 ⊕ 𝑏) # Bitwise exclusive-or
3 for each 𝑖 ∈ [width(𝑥) − 1, 0] do
4 if mask[𝑖] = 0 then
5 break
6 assert 𝑎[𝑖] = 𝑏[𝑖] # Will always be true
7 if ¬(𝑥[𝑖] = 𝜇 ∨ 𝑥[𝑖] = 𝑎[𝑖]) then
8 return ⊥
9 𝑥[𝑖] ← 𝑎[𝑖]

10 return 𝑥

Algorithm 3: Algorithm to refine the lower bound of an interval

Now that we have the component parts of our reduction, we can actually compute our reduced product.
It should be sufficient to simply refine our interval bounds, then refine our tnum based on the new
interval.¹¹ This produces the remarkably simple Algorithm 4, although it is only simple because all the
difficult parts have been sub-contracted to the other functions.

1 def reduce([𝑎, 𝑏], 𝑥)
2 𝑎 ← refineLowerBound(𝑎, 𝑥)
3 𝑏 ← refineUpperBound(𝑏, 𝑥)
4 𝑥 ← refineTnum([𝑎, 𝑏], 𝑥)
5 return [𝑎, 𝑏], 𝑥

Algorithm 4: Fully reduce an interval-tnum pair

Things I read and you should read too
[1] A. Miné, “Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation,”

Foundations and Trends® in Programming Languages, vol. 4, no. 3–4, pp. 120–372, 2017, doi:
10.1561/2500000034.

[2] A. Møller and M. I. Schwartzbach, “Static Program Analysis.” Oct. 2018.

¹¹I think this is sufficient, but I’m not sure. I dont think that the interval to tnum refinement can introduce any more
information than already exists in the interval, so further iterations of refinement would be redundant.

https://doi.org/10.1561/2500000034

	Preface
	Introduction
	Motivation
	Known Bits Analysis
	Maths time
	Order theory and lattices
	Theory is boring hurry up

	Reduced product. Finally!
	Computers aren't maths, dummyCitation needed.
	Let's get clever

	Things I read and you should read too

